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Preface

time, Then follow chapters which are devoted to the study of
motive forces produced by the weight and the barrel spring, the
calculations of trains and the theory of gearings. Then chapters
on escapements, and finally the theory of adjusting and regulating
forms an important part of the work, and will be treated with all
‘the exactness due the subject. We will close this exposition of
the theory by a treatise on the compensation of chronometers.

We hope that this work will contribute its share towards
forming a generation of capable and educated horologists who can
assist in the development of the fascinating industry of horology.

We owe a just tribute of appreciation to THE KEYSTONE, which
has undertaken the publication of this work in the English language,
and to James Allan, Jr., of Charleston, S. C., former pupil of the
Locle Horological School, who has so well performed the work of

translation.
JuLEs GROSSMANN,

Locle, Switzerland.

HERMANN GROSSMANN,
Neuchste) Switzeriand.
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General Principles of Cosmography. II

value of the solar day, variable from the sidereal day, is only a
mean value.
6. The time that the earth takes to traverse its orbit, that is to
say a year, contains exactly one sidereal day more than the solar days.
¢ True time. Mean time. The curve that the earth describes
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Fig. 1

around the sun is an ellipse of which that star occupies one of the
foci. Our planet does not traverse this curve with a uniform speed,
it moves more rapidly when it is nearest the sun and more slowly
when it is farthest away. The arcs traversed by the earth in one
day are not then the same length during all the year. There
results an irregularity in the duration of the solar day, the solar
day is longest when the earth goes fastest, and it is shortest when










































General Principles of Mechanics. 25

The expression % m v% has received the name of active power.
We can then say that the active power of a body in motion is half
the product of its mass by the square of its velocity ; or, also, that
the mechanical work which imparts a certain velocity to a body is
equal to the active power which animates that body.

We give the name of acfive force to twice the active power ;
we have then

Active tpower = } m2?
Active force = m 2.

41. Every body in motion is capable of doing work. In effect
the body has a mass #z ; it hasa velocity #, since it is in motion, con-
sequently the product § 7 22 gives us the value of the work PZ,
to which the velocity v corresponds; we can therefore say that
every body in motion is capable of producing work.

Moment of a Force.

42. Let us now imagine two cylinders of different diameters
turning around an axis O (Fig. 7) and let us admit, for example,
that the first is three times as great as the second. Let us
suspend weights at the ends of light cords
wrapped around each cylinder, in such a
manner that each of these weights acts in a
contrary sense to the other. In order that
equilibrium may existin this system, we will
find that the weight fixed to the small cyl-
inder should be three times as great as
that which is fixed to the large one. In
this manner, if we turn the cylinder one
revolution, one of the weights will rise
while the other will fall ; the weight p tra-
versing a path represented by 2 = X 3 its
work will be

2m X 30

The weight P traverses a path 2 = X 1, producing at the same

time a work
27 X 1P,

Since we have 3 p = P we can admit
(@) 27 X 3p =27 X 1A

and there will be equilibrium, because the mechanical work of one
of the weights is equal to that of the other. The equality of the






General Principles of Mechanics. 27

From what we have said before, equilibrium will exist when
the moment of the force P will be equal to the moment of the
force F, that is to say, when

 FXO0A=PXOBPB,
which can be written
F_0&
P OHA
The two forces should, therefore, be in inverse proportion to their
lever arms.

?

F

Fig. 9

44, One often distinguishes two kinds of levers : In the lever
of the first kind the fulcrum is situated between the points of
application of the two forces ; in the other, Fig. 9, this fixed point
is situated’ at one of the extremeties of the body. From the
theoretical point of view this distinction is useless and the con-
ditions of equilibrium of the lever apply to all cases.

Transmission of Work in Machines

45. We give the name of mackine to every system of bodies
intended to transmit the work of forces. In order to explain in
what manner this transmission is effected it is necessary to enter
into some details.

The relative movements of the different parts of a machine are
not determined only in direction but also in intensity. Generally
the movements are periodically uniform (31) ; the speed is put in
harmony with the requirements of the industrial work to be
produced without its ever attaining the limit at which the solidity
of the machine would be endangered.

46. Different forces act on a machine in motion, which can be
divided into three classes :

ist. Motive forces. These are those which act in the direction












General Principles of Mechanics. 31

realized, which renders absolutely illusive the hypothesis of perpetual
motion. The product of a machine rarely passes 8o per cent.; it
is nearly always much inferior to this limit.

In this preliminary study we have desired to establish a basis
which is nothing more than the enunciation of some fundamental
principles of mechanics. In the course which is about to follow, we
will make a constant use of them, and all their developments will
be found in the text.








































































Maintaining or Motive Forces. 55

sth. When the spring is wound up to a certain point, the coils
of which it is composed deviate from the circular form and spread
out to one side ; there is thus produced a decomposition of force,
one of the components of which is directed towards the center of
the barrel and is transformed into friction. We can add a similar
defect which is produced at the center and which on combining
with the exterior fault can diminish, or, in certain cases, increase
the moment of the force of the spring.

6th. Considerable friction is produced between the coils of
the spring ; the oil which we are obliged to use to reduce friction
produces a slight effect by its adhesive force.

99. Example for the Numerical Calculation of the Formula (7).
The dimensions of the spring for a watch 43 mm. diameter (19 lines)
being the following :

Thickness, ¢, — 0.18 mm.

Height, %, = 3.6 mm.

Length, L, =650 mm.
to calculate the moment of the force of this spring.

When the elastic effort of this spring is nothing, that is to say,
when it is placed perfectly free on a table, it makes 5 turns. Coiled
in the interior of the barrel and pressing against the drum, it makes
14. The development of this spring being 6 turns in the barrel, a
half turn is given for safety, and we will have, according to what

has been said,
7 =14 + 55 — 5 = 14.5 turns,

when the watch is completely wound up.
Let us take the coefficient of elasticity, £ = 23000000. The
formula (7) can be written thus :

Ehetwn

F= 6L ’

replacing the letters by their values, we have

Fe 23000000 X 3.6 X 0.18% X 3.1416 X 14.5
- 6 X 650

Effecting the above calculations we find that

F = 5640 gr.
for = 14.5 turns.



















































72 Lessons in Horology.

The force F’ acting at the exterior of the barrel will be for the
two cases :

M M
/R ) — 27
F,_-——R 0 and F/ = % (0 + a),
and the moment of these forces with relation to the axis of the

fusee will be:
Frr, =

Mo ¢ and F7 = 22 (0 + ).
Making these two values equal, one has

M r, Mr
R o = (' ")'

or
7, 8 =7 (04 a),
from whence one extracts

(1) r= ori,l_ 0“_
As in the preceding case, we place
rdB=~Rda,
from whence
ip==2qa

Replacing r by its value (I) one obtains

dB— (0 a) dae,

(fod¢+f¢.d¢)

p:;%—(ec-{-}a.z).

and on integrating,

from whence

Transformations analogous to the preceding case will give us
successively :
'}“2—'—0“:_ o Bb

¢=+ze¢+o=='°7°p+o=,

NI
e T

G=-—-°:&:.J2rop+l




Maintaining or Motive Forces. 73
The value of a, extracted from the equation (1), is equal to

a =200,
r
consequently,
Yo g—_0 = — 27
2 9 —0 = oio\/keop_,.,,

and
"o .—:!:.er"p +1,

27 p i
J Ro.—"‘i"xv

or still further, by substituting p = 2« 7' and o = 2 x 2,

from whence
y =

%o

(2) r=
27,

"
R w tT
118. Numerical Calculation of the Preceding Equation. As an
example of the application of the preceding calculation, let us
determine the dimensions of a marine chronometer’s fusee and let
the following be the data :
Exterior radius of the barrel including half the thickness of

the chain, . . . c v« + . R=21.7mm
Maximum radius of the fusee, .« « . 7y = 18.3mm.,
Development of the spring, . . . . n = 3.4 turns.

Let us admit, that when the spring is set up one turn, the chain
acts on an angle p = o, in this case then
n = o.

When the fusee has made one turn, wé then will have n’ = 1,
and on replacing the letters by their values in the formula (2), we
will have

y = 18.3
2 X 183 X1
\/ a7 X34 T
The calculation gives
Log: (2 X 18.3) =log: 366—-15634811 Log: 21.7 = 1.33645
—log: 627 7X 3. 4; 1.8679386 +log: 3.4 =o0.53147
0.6955425 — I 1,8679386_

Corresponding number = 0.4961 v
























Maintaining or Motive Forces. 81

The essential conditions to be fulfilled in making the end of
the finger are the solidity of the piece and the free action of the
mechanism. We prefer to represent it by means of two arcs of
drcles : one m n, whose length equals a semi-circumference, and
the other n £, whose center is found almost on the point of the
shoulder of the finger.

Practically, the end of the finger % / should be slightly smaller
than the corresponding opening of the other piece, that is to say,
there should exist a certain play, to assure the free action of the
mechanism ; this play will be easily obtained by taking off the sharp
corners £ and / of the finger.

It is also to be recommended, in practice, to make the full
tooth of the maltese cross with a radius O’ D longer than the
radius O’ C of the cut-out teeth, in order to cause the stoppage
a little before the line of centers. It is, moreover, necessary to
slightly round off the corners 4, C, A’, C, etc., of the teeth of
the wheel.



CHAPTER IIL

Wheel-Work.

129. Purpeses of Wheek-Work. The wheels of a watch and of
a dock have a double duty to fultill : first, to transmit the move-
ment arisiny from the motive power, from the first mobile down to
the escapement: secoad, to reckon the number of oscillations
accomplished by the bulince wheel in a given time, indicating this
time by meuns of bands oa a spaced dial

Since on the cae band the movement of the balance wheel is
a npid coe amd oo the other the motive force should only be
expemnded dowly. amd. moreover, the wheels carrving the hands
should make certain oumbers of turns. according to given rela-
tuas, cae understamds thae the wheel-work should be arranged in
such & wanmer as to nuliply. progresstvely, the speed of the first
mobide.  This & why we make the whesls gear into pindons, and
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Wheel - Work 91

wheel 15 ; the pinions of the third and fourth wheels eack 8 leaves
and that of the escapement 7.
Solution : The formula (8) gives

N = B CD2E
from whence bed
N 84X 6§§ 26;72 X 15 _ 14400 oscillations.

141. What should be the number of teeth in a fourth wheel
gearing in an escape pinion, knowing that the pinion should make
10 turns while the wheel makes r 7

Solution : The equation (2)

n A

this equation with two unknown quantities, 4 and g, is indefinite ;
several solutions can, therefore, satisfy its demands. Replacing «

successively by the numbers 6, 7, 8, 10..... , we find for 4 the
corresponding values,
60, 70, 80, 100, ..... ,
because

= & = — = etc.

10 6o 70 8o 100
6 7 8 10

I

One obtains, then, the number of teeth in the wheel by multi-
Plying the number of leaves chosen, by the number of rotations
Wwhich the pinion should make. This is always practicable when
the number of turns is a whole number.

If, in place of choosing the number of leaves in the pinion, one
takes the number of teeth in the wheel, the result may easily become
fractional,

The equation (2) can be written by making » = 1

A
a = "n—,.
Let 4 = 66, we would have for the preceding case,
a = % = 6§,

2 solution impossible to carry out.
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center wheel ; the barrel would gear in - this pinion and the wheel
mounted on the axis of this pinion should gear in that of the center
wheel. The difficulty is thus changed and becomes that of finding
aplace in the watch in which to put another mobile and of increas-
ing the motive power a very appreciable quantity.

In order to solve the problem thus arising, we will make use

of formula (4)

» _ AB
n ab
and we will have

LN
%

192 _ =
4  ab =48

Choosing for @ 12 leaves and for 4 10, one has
A B = 48 X 12 X 10,

Resolving the two members of the equation into their prime

factors, one will obtain
' 27 X 3* X 5=4 B,
with which one could form the two groups
A= 2% X 32 = 72
B = 2% X 5 = 8,
or else )
A=2°X3 = 96
B =22 X 3 X 5 = 6o

As proof, one should find that
8= 72X8 _ 96X6
12 X Io 12 X 10

150, Suppose we wish to determine the numbers of teeth and
of leaves in the wheels and pinions forming the dial wheels.
Description of this mechanism.

The dial wheels are the mechanism whose object is to secure
the movement of the hour hand. Since the center wheel makes one
turn per hour, one fixes on the prolongation of its axis, under the
dial, a second pinion, called the cannon pinion. This adjustment is
made in such a manner that this cannon pinion participates in the
movement of the center wheel during the ordinary running of the
watch, although it is possible to give it a separate movement when
one wishes to set the hands. Thus the center wheel, the cannon
pinion and the minute hand have a common movement and make
one turn per hour. The cannon pinion a gears in the minute wheel
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These figures, 36 for the minute wheel and 40 for the hour
wheel, are very often employed in practice; one then gives 12
leaves to the cannon pinion and 10 to the minute wheel pinion.

Evidently other groups can be formed, such as these :

A= 2% X 3 = 24
B = 23 X 3 X 5 = 60,
or
A = 26 = 32
. B = 3* X 5 = 45,
©r, again,
A=2 X 3X5=30
B = 2% X 3 = 48.

T ke verification always gives : .
24 X 60 __ 32X 45 _ 30X 48 _

12 X 10 12 X IO 12 X Io

In small watches or low-priced ones, a cannon pinion of 10
Leaves and a minute-wheel pinion of 8 leaves are often used ; this

=X aves for the wheels :
12 X 10 X 8 = A B

and
26 X 3 X 5=4 B.
“Xhe two groups ordinarily employed are :
' A=2X 3 X 5= 30
B = 28 = 32.
Sometimes, also, a cannon pinion of 14 leaves is used and a
minute-wheel pinion of 8 leaves ; it then becomes

12 X 14 X 8 = A B

28 X 3 X7=4235,
from which one can make

A = 22 X 7 = 28

B = 2% X 3 = 48.
These last two cases always give

o X32 28X48

10 X 8 14 X8
151. If it were desired to make the dial wheels of a watch

whose dial was divided into 24 hours, the question would not be
any more complex, since one would only have to solve the equa-

ton24ad=AB.
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In order to determine the numbers of teeth in the fusee an
the intermediate wheel, as well as for the pinions ¢ and 6,
would employ the equation (3)

P ‘
Fig. 1
in which #n” = 45 and » = 1. If we should choose pinion

18 and 16 leaves, we will place
45 X 18 X 16 = A B.
The first member separated into prime factors gives
2 X3 X5=423,
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which can be grouped in the following manner :

A= 22 X 3% = 108
B = 2% X 3 X 5=120

We would have, correctly,

108 X 120

45 = _I-%((T
To determine the numbers of teeth suitable for the other
Mobiles, let us note, first, that since the pendulum of this regulator
Should beat one oscillation per second, an escape wheel with 30
teeth should execute one turn in a minute (71). One can then
fasten the second hand on the prolongation of the axis of its
Pimion & The escape wheel executes then 60 turns, while the
Ceunter wheel makes 1, and one will have, on employing pinions

Of 12and 10leaves, ¢, % 12 X 10 = C D,

o 3 X3 X 5= D,
hich can give C—=2 X 39 X5 =0
D = 2% X 5 = 8o.
A5 proof, one will have correctly
_ 99 X &
T 12 X 10°

154, If, in place of running 33 days, one desived a clock
Punning 13 months, what should be the numbers of teeth in the
2oheel-work, with the same data as that in the preceding problem ?

Solution : Thirteen months calculated at the rate of 30 days is
equal to 390 days or 9360 hours. One places

n” _ABC
n ~ abc’
for one sees that, in order to avoid having wheels with too many
teeth, a second intermediate wheel must be introduced between the
fusee and the center wheel. One will then have
9360 A B C,
176 = abc ’
that is to say, while the fusee wheel makes 17.6 turns the center
wheel should make 9360.
Since the numerical expression
9360
17.6
cannot be employcd because of the fraction in the denominator, we
will transform it by means of the following operation into an

QORI
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Solution: Let us call x the unknown number and let the

Center wheel have 8o teeth, Third wheel pinion 10 leaves
Third c “ox « Fourth 6 6 10 ““
Fourth o [ 70 (3 Esmpe [ " 7 ‘"
Bcape (13 (43 I 5 6

The formula (8) admits of placing
1Boco — X x X 70 X2 X15 .

L 10 X 10 X 7 ’
or, simplifying,
18000 = 240 x,
and
18000
X = Py 75 teeth,

The lost third wheel, therefore, had 75 teeth.

156. If, in the preceding problem, the last mobile had been the
third-wheel pinion, how would the equation be solved ?
Solution : We would have in an analogous manner :

18000 — 30 X 75 X 70 X 2 X 15

or x X 10 X7 !
xSooo=I
x
and
180000

= = 10 leaves.
18000

157, Still using the preceding data, let us suppose that the
pinion and the escape wheel were both lost, and let us propose to
determine their teeth ranges.

Solution : We will have, in this case, two unknown quantities,
which we will designate by x and y ; the equation (8) will be written

_ 8 X75X70 X2x
18000 = 1o X 10Xy °

from whence

J
and
18000 _ x
‘ 8400 ~ ¥y
On simplifying,
15 _x
7 y’

The wheel, then, should have 15 teeth and the pinion 7 leaves.
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The fourth wheel should then execute 100 turns while the
center wheel made 1 ; we will, therefore, have

100 — 2 €
T ab’

Choosing pinions of 8 leaves, we have
100 X 8 X 8=F8C
Reducing to prime factors, one obtains afterwards
2* X 52 =P8 G
ne could form the two groups
24t X 5 8o
2t X 5 8o,

The center and the third wheel should, therefore, each have 8o
teeth and should gear in pinions with 8 leaves. There now remains
Tus to determine the numbers of teeth in the fourth and escape

wheels, as well as the number of leaves in the escape pinion ;
these numbers have to fulfill the condition declared, not to alter
the duration of the oscillations of the balance.

Let us determine, in the first place, the number of oscillations
which the balance would execute during one turn of the fourth
wheel. In one day this number is equal to 24 times 18,000 ; for
one turn of the center wheel it should be 20 times less, and for
one turn of the fourth wheel still 100 times less, which gives

24 X 18000

= 216 oscillations.
20 X I00

Let us admit, as is the custom, an escape wheel with 15 teeth.
The number of turns which this wheel should execute while the
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If the hour hand should only make one turn a day, one then has

20 =

AR
ad’

Taking 6 = 10and @ = 8:

or

20 X 10 X 8 = A B,
28 X 53 = A4 B.

One could then form the two groups

28 X 5 = 40
28 X 5 = 40.

The minute and hour wheels would each have 40 teeth in this case.
164. Calculation of the Numbers comprising the Teeth-ranges
of the Wheels of a Watch with Independent Second Hand. These

Watches, which were
constructed in consid-
€rable numbers some
Years ago, generally
COntained two distinct
trains, In this system
A Special hand is placed
a‘f the center of the
“1al and makes one
Jamp only per second ;
can be arrested for
An indefinite time, then
"Started again at will,
“Without stopping the
Watch, The office of
this second train is to
drive this independent
second hand. The
principle of the me-
chanism is, therefore,
to release, at each sec-
ond, the train which
brings the hand into
action. For this pur-
pose the last pinion of
the second train car-
ries on its axis an arm

Fig. 35
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and minute hands are, therefore, driven directly by the barrel.
Let us further remark that the wheel 4 and its pinion should be
adjusted to turn easily on the barrel, in order that the hands can
be set to the hours.

169b. We first propose to calculate the numbers of oscillations
of the balance in such a watch, the numbers of teeth being known.

Suppose

Number of teeth in the barrel . . C = 128
¢« o« o« ¢« third wheel D= 84

(X3 (X3 [ [ fourth (13 E — 60

({3 “ [ (13 esCape ‘Ol F — IS

c = 8

¢ ¢ leaves ‘‘ three pinions . {d = 7

e = 6

“ ‘“ teeth ‘‘ minute wheel . A = 72

[ (X3 (X3 [ hour X3 B P 66

¢ ¢ leaves ‘“ cannon pinion a = 18

¢ ¢ ¢« ¢  minute wheel pinion. 6 = 22

The cannon pinion should make one rotation during an hour.
We will obtain the time of one rotation of the barrel by the quotient

A 72

T T8 T4

The barrel takes four hours to execute one turn on its axis.
The number of oscillations accomplished by the balance during one
turn of the barrel, that is, during four hours, will be expressed by
the formula

CDE-:2F
aN=—"37
and during one hour
CD E F
N=-Z =2
2cde

We will have, consequently,

128 X 84 X 60 X 15 e e
N = = .
ZX8X7X6 14400 oscillations

The train of the dial wheels will give, properly,
72 X 66
18 X 22 12. ,
169 ¢. Suppose now we wish to calculate the numbers of teeth

in the train of a Roskopf style of watch, knowing that the balance
should make 16,200 oscillations per hour.
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Let us admit, as in the preceding case, that the barrel makes
one turn in four hours. We will have
CDE 2F
4cde ’
Choosing pinions of 8, 7 and 6 leaves, one will have
16200 X 2 X 8 X 7 X 6 = CDEF,
and on reducing the first member into prime factors,
2 X 3 Xs$* X7=CDEF
with which we could form the following groups :

16200 =

C = 2% X 3 X 5 = 120 teeth
D=2 X3 X7= 8 *“
E=2% X3 X§5= 60 *
F =2 X 3% = 18
The train of the dial wheel should give
AB
a6 T

Choosing @ = 22 and 4 = 18, one has
AB =12 X 22 X 18
AB= 2¢ X 3% X 11,
from whence, for example,
A — 28 X 3!
B=2 X 3 X 11

72 teeth
66 (X3



CHAPTER IV.

Gearings.

170. Definition. The theory of gearings nas for its object the
study of the transmission of the mechanical work from one wheel
to another.

171. Let us suppose, at first, that we have only one wheel
garing in a pinion and that in place of the complicated force of
the spring we have a weight P (Fig. 38) acting through the medium
of a thin and flexible cord on a
¢ylinder whose radius is equal to the ... -
unit and which is fastened concen- - .
trically to the axis of the wheel. ! *,

Let us, at the same time, admit :
that the resisting force be represented § &
bya weight O suspended in the same }
manner as P from a cylinder adjusted
on the axis of the pinion and with a ™.

3 .
Seecee”

fadius equal to the unit. In further Bl Sl
imagining this system animated with

auniform movement, the gearing will

be perfect if, at no matter what instant E’j
of the movement, the work of the ¥ig, 28

force P is equal and in the contrary
direction to the work of the force O, the relation of the forces
Pand Q being properly established.

Since these forces are in the same direction as the path tra-
Versed by their point of application, the mechanical work effected,
5 measured by the product of the intensity of these forces by the
distance traversed (37n.

If the relation of the forces P and Q is correctly chosen, their
degree may be arbitrary, and, consequently, they can be supposed
% very small or even as nothing. Therein is the basis of the
Mportant theory explained in kinetics.

172. One can also exclude the movement and devote oneself
More especially to the transmission of the force.

We will examine the gearings from this double point of view.

7
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When 2, » and #»’ are known, one has for »’
w =n 7’},
and if, as is generally the case, 7 is equal to 1, one has simply

r
n’—7.

The number of turns executed by the second pulley while the

first makes 1 is then equal to the relation between the radii of the
two wheels.

Fig. 41

179. Applications. .An arbor makes roo turns to the minute ;
s furnished with a pulley whose diameter is equal to 0.70 m. A
band transmits its movement to a pulley of o.40 m. diameter placed
O @ second arbor. One desires to know the number of turns made
b the second pulley.

We will have from the preceding relation

w = 100 X 0.70

o40

Since # = 100; 27 = 0,70 and 2 7/ = o0.40,
then, performing the calculations,
n/ = 175 turns.

A pulley of 0.80 m. diameler executes 9o turns to the minute,
what should be the diameter of the pulley driven, knowing that it
should execute r6o turns during the same time #

The formula

can be just as well written
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In order to obtain a relation between the primitive radii and
the numbers of teeth, let us divide the equation

2wr=4p»n

by

2wy =pu
we will obtain

2®xr _ pn

2wy pau’
or, after simplifying

r n
(3) 2l

The primitive radii are then proportionate to the numbers of teeth.
185. Calculation of the Primitive Radii. In an exterior gearing,
such as that which we have consndered (Fig. 38), the distance
between the centers of the two movers is equal to the sum of their
primitive radii ; that is to say, one should have
(4 D=r+7,
D representing this distance.
Let us take up again the proportion (3)
r
I
in which the radii » and # are unknown quantities and the number
of teeth # and 7’ known quantities.
Without changing the value of an equation, one can add to
each of its members the same term, or an equivalent term. We

can then write

”
= _n"

ol
7+7 n’+n"

since the two terms -5- and -%- are both equal to 1.
The common denominator permits us to write

r+¢v _n+4n
n

»
and because of (4) one will also have
D _n4n
YT W
from whence we deduce

In an analogous manner we would find

”n
(6) f=Dm.
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The lever arm (43) of the force V is O ¢ = », its moment
is then NX7
and because of the equilibrium, one should have (43) :

' (15) F=unr,
since the lever arm of the force F is equal to the unit.

On the other hand, the pinion is acted upon by two forces :
one, F”, is the resisting moment to be determined ; the other, N,

R L I
-

oo ..

e JF " J

e -

Fig. 46

coming from the tooth of the wheel O and acting, as also does the
force AV, in the direction of the common normal at the point of
contact.

Since the pinion, as well as the wheel, is in the state of equi-
librium, one should have, in an analogous manner, the equality of

the moments : (16) F' = NX .

On dividing the equations (15) and (16) member by member,
one has F_ N»
FI T N
The normal forces V and N’ are equal, since their effects
destroy each other ; consequently, one obtains simply

F r
(17) T
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199. Let us choose as numerical example the very frequent case,

10X 10 X10X 7
BoX BoX 75X 70 L&

The force has become 4800 times weaker but the speed of the
last mover is 4800 times greater. That which, in mechanics, is
lost in force is gained in speed and reciprocally.

200. We have just studied the transmission of the moment of
the force from one wheel to another, admitting that the point of
contact of the movers is on the line of centers.

Let us now see under what condition this point of contact can
be found outside of that line, in such a manner that the moment of

F™ — 4000

Fig. 47

Jorce transmitted preserves at eack instant the same value that it
possessed when the contact took place on the line of centers.
Otherwise expressed, the question is to form the teeth and the
leaves in such a manner that the_ transmission of the force may be
constant. It is necessary, therefore, that the value given by the

formula (19) o’
Fr=rFZ

remains the same no matter what the position of the movement.
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If (Fig. 50) the circumference passing through the points

1”,2", 3", ... is the primitive circumference of the wheel,
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Fig. 50

O A B that of the pinion, and if this last is moved without
sing, around the primitive circumference of the wheel, the
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base of the evolute and # that of its generating circle, we see that
the length of the base of the evolvent is

RO ==>r
and that of the evolute
R0 ==y,

On dividing one of these equations by the other, one obtains

RO =7
or R0 w9y’
R _r
R —

On the other hand, one should still have

& R— R =29,
Oxm whence one draws

o R—F
O substituting 2
R 27

Y-l Iy

=nd ®F-R—R
Rz

) —
(® & T R+ 27

Let, for example, R = 6o mm. and » = 20 mm., we would
ha-\re, in this case,

603 3600
/ — — —
| R = P = = 36 mm.
and 60 —
y = So—36 = 12 mm.

2

246. The point M’ (Fig. 69) is the center of curvature of the
Boint # of the epicycloid 4 M B ; it is situated on the evolute
~q1," M A

We have, in effect,

arc M P=arc A P,

Since the generating circle has rolled without slipping on the cir-
cumference 4 4. But,

arc M P= raandarc 4 P= R X angle 4 C P.

Let us call the angle 4 C P, ¥ and place

ra = Ry,
one will then have
r i

R "y
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When the generating circle with radius » has rolled without
slipping on the base B’ A4,”, this length of arc B’ 4,” is equal
to » . One has also

w9 = arc PM' + arc M’ P/,
then
arc P/ M’ = arc P’ A,”,
arc P M = arc B/ P/,
and as
arc PM’ = o X angle P O/ M,
arc B/ P/ = R’ vy,
one will then have
v X angle PO/ M’ = R/ y,
from whence
v _ Y
R~ Tangle PO' M7
But as we have
r

r_r
®- R

we will also have

Y - Y
e angle PO/ M’
from whence a = angle P O’ M.

The point A’ thus determined belongs, therefore, properly to
the evolute.

Since the angle M 7P = M' P’ P = } a, and since the angles
at M and at M’ are right angles, the straight lines &/ Pand P M’
will have the same alignment.

247. The straight line M M’ representing the line developed
is the radius of curvature of the point M of the evolvent and the
length of the arc A M’ developed.

We have, in effect,

MM =MP+ PM,
or
MP=2rsinaand PAM’ = 27. sin }a;
therefore,
MM =2 (r+ ) sin}a
Designating the radius of curvature by s and replacing 7/ by

R—l”_ﬂR(

RF2r + 27
we will have
R . R+r .
Y do— VYsinta=— s r7 1
(2) & 27 (1 b)) sinte 4rR+2rsmza.
For a numerical example, let » == 20 mm., £ = 60 mm.,

a - 60°; we will obtain successively,
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a relation between the radius § and the angle 0. This relation is
complicated, but it has a great importance in the calculations

Fig, 70

and in the second

relative to the de-

. termination of the
i total radius of the
: wheels.

- If the angles
MO A = a and
MC O = B are
known, we would
have the propor-
tion

§ sinae
r sinB’
from whence
sin @
8 =s,n%
sin B

Let us now

seek for a relation

between the angles
0 and &, and for
this purpose pro-
ject the point A7 on
the straight line
C O'; we will thus
form two right-
angled triangles
MEOQand MEC
In the first we have

M E = 7. sin a,

ME = (R + r — ». cos a) tang. B,

from whence

r.sin a = (R 4+  — r. cos &) tang. B.

On dividing by 7, it becomes :

sin @ = (Lf- + 1 — cos a) tang. B.

But
AA =MA,
therefore,
ra=2R(0+B):
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TABLE SHOWING THE ANGLE } & TRAVERSED BY THE PINION OF SEVERAL
ORDINARY GEARINGS DURING THE CONTACT OF A TOOTH OF THE
WHEEL WITH THE LEAF OF THIS PINION.

Total
Number of Teeth ‘ Driving Angle

Wheel 60 . . .

Pinion 6 42° 157 177 17° 44’ 13" 60°
Wheel 70 . . . 1
Pi“;:l 7: 39° 55" 15”7  11° 30/ 27.857” 51° 25" 42.857”.
Wheel 60 . . .
Pinion 8 37° 36/ 207 7° 23/ 40" 45°
Wheel 64 . . .
Pinion 8 37° 42 3" 7° 17 307 45°
Wheel 8o . . .
Pinion 8 38° o 557 6° 59’ 57 45°

.
Wheel 75 . . .
Pinion 10 34° 39" 53" 1° 20/ 77 36°
Wheel 80 . . .
Pinion 10 34° 457 487 1° 14/ 127 36°
Wheel go . . . 20 277 3o
Pinion 12 . . .
Wheel 6 - o0 3y w7
Pinion 12 . . .
VVVVﬁeel 120. . . 2 5o/

Pini 32° 50/ _— in place of the
inion 12 . . .. 30° necessary
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We will have, consequently, the value of the angle ¢ O ¢ ex-
pressed by

. _ 4 7 sin 4°
lcang.aO’c-—ir_‘_',_*'cos ©
or
sin 4°
tang: a 0/’ ¢c =

r °
41 i_' — COs 4°.
The calculation gives
a 0/ c = 19° o/ 4¢".
The side O ¢ of the triangle O’ ¢ G will be at last given us by the
formula
__ % 7.sin ¢°
Oc=na o
from whence, after making the calculation,
OV ¢ = 6.4236.

266, Let us further project the point c on ¢, on the straight
line O s, designating by y the right line ¢ ¢ and let us determine
this line. We will have

y= 0 csinc O d,

but
cO0Vd=a0Vc—a0d=19° 46/ — 10° = g° o’ 46//;
therefore, ¥ = 6.4236 X sin g° o/ 46”7
and

¥y = 1.00626.

267. We now know the radius of curvature § at the point ¢
of the epicycloid, the inclination of this radius to the line passing
through the middle of the leaf, therefore the angle w and, finally,
the ordinate y corresponding to this same data. There only re-
mains, now, to determine an elliptical curve capable of satisfying
these conditions.

268. Radius of Curvature of an Ellipse. The equation of this

curve being ,
y + bixl=albl’

one obtains
dy O x
dx @
and Y
dy _ _ b
dx* a*y*’

The general equation of the radius being

s=(’+ di)

dx’
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we will obtain successively
( B\t (et b)Y
I+ )
8

¢ 28 s F]
) @A,
= 4
a* i — (a* L ,
therefore (a*>*) a'y) ay
(@) _ a9y _ ..
ay a* y* ’
consequently

$ o —(a‘y’+6‘x’)‘
a* b :

We have the length of the normal A7 &V (Fig. 72) expres

Fig. 12

——Zdrv_ , [ L=
’\/‘+ rr3 —J’\/”W

and

———— 1
yl/a‘y'+b‘x’ a’y=MN
_VEF T

MN="—"g—
y s = Lyt o)l
a* :
One can, therefore, place .

§ =M N,
we have, on the other hand,
M N = -.—y—,
sin w
therefore
$ = _ay
bt sin® w’
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frorxa whence s
s 8 bsin’w
(a) a ~
In order to determine the value of 4, let us remark that
=
PN= tang w’
P &V being the sub-normal, the general equation of which is
Sn=y 32 __,b2x__ _b0=x
=) dx - y a® ¥ - a* "’
froxm whence
y  x
tang.w a*
and
—r=__%
* 6® tang w

a.y’_l_b.x!:a’b,’

W hich we can write under the form

J"=b'(1—':—:).
WWe will have
2 a*y _ 8sin®>w 8 sin wcos® w
- e b tang*w - ytang*w y
©om whence

8 sin w.cos® w

"'.=1P(x y
and

- >
@ ¢ —Jy—hsinw. cos® w

The equation (1) gives, moreover,

(3) a= b"/sﬁ' siy.n'w'

These two last values are those of the semi-axes of the ellipse,
which fulfills the conditions sought.

269. Numerical Application to the Preceding Example. We
will have
consequently

b= 1.00626 * =1
1.00626 — 2.28433 sin 78° cos® 78° 1.05834

0) 0
@ = 1.05834" 4 ,’_’8:130.‘%'& = 1.62245.

y = 1.00626. w = 78°, 8 = 2.28433;

and
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Pfimitivediameterdthe pinion should then ooincide with the
division which corresponds to its number of leaves. The proportion

r E 4

. : 4
1s then found to be verified.

But, as has been shown before, we run against the difficulty of
Dot being able conveniently to fit the primitive diameters of the two
mobiles in the compass, since these diameters are only theoretical

The difhiculty has been overcome in the following way :

277{. On dividing the primitive diameter of any wheel by the
Dumber of its teeth, we obtain a length which we call ‘‘diametrical
Dich” of the gearing. The proportional compass always gives
the diametrical pitch by its division
I when the wheel is placed so that T
Ats primitive diameter corresponds in d

e instrument to the division of the

Txumber of its teeth. .
But, if we measure the height n6 -
Qf the ogive a & (Fig. 74) and, on 2

Sccount of the one which is oppo-

Site, we double this value, if we after- rd
‘ward divide this figure by the dia- e T
metrical pitch, we obtain a quotient Fig. 74

which, added to the number of teeth,
will give the total diameter of the wheel in units of diametrical pitch.
This diameter is then

d being the pitch considered.
On now placing the total diameter of the wheel at the division

2ab
n + R
its primitive radius will be by this fact placed at the division a.
The same for the pinion.

278. Example. Let us consider a wheel with 60 teeth gearing
in a pinion with 6 leaves, and let us represent graphically this
wheel with a primitive radius of 540 mm.

The diametrical pitch should be

2 X 540
60

= 18 mm.
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TABLE FOR USING THE PROPORTIONAL COMPASS

DIVISION OF THE COMPASS

THE RADIUS OR DIAMETER == 1

NUMBER FOR SHAPE OF TEETH SHAPE OF TEETH
DESIGNATION oF

TEETH Elliptical | Circular Elliptical Circular
Wheel . . 180 183.542 1.019676
Pinion . . 12 13.66 13.25 1.14 1.104
Wheel . . 144 147.446 1.024
Pinion . . 10 11.5 11.05 1.15 1.105
Wheel . . 96 99.747 1.03904
Pinion . . 12 13.66 13.25 1.14 1.104
Wheel . . 8o 83.3853 1.0423
Pinion . . 10 11.5 11.05 1.15 1.105
Wheel . . 64 67.1 1.048475
Pinion . . 8 9.45 9.05 1.18 I.I3
Wheel . . 90 93.614 1.04016
Pinion . . 12 13.66 13.25 1.14 1.104
Wheel . 75 78.375 1.045
Pinion . . 10 11.5 11.05 I.15 1.105
Wheel . . 6o 63.0976 . 1.05I1
Pinion . . 8 9.5 9.05 1.18 1.13
Wheel . . 8o 83.1247 1.039
Pinion . . 8 9.5 9.05 1.18 1.13
Wheel . . 60 62.7839 1.0464
Pinion . 6 7.4648 7.05 1.2441 1.175
Wheel . . 70 72.9637 10423 || 15 real diameter
Pinion . . 7 8.397 8.05 1.1995 }-1 on pressing 2

“ ; r912 | 7.7 1139 |and 1 on the other

Wheel . 48 50.77 1.0577
Pinion . . [ 7.4 7.05 1.23 1.175
Wheel . . 36 38.74 1.0762
Pinion . . 6 7.4 7.05 1.23 1.175
Wheel . 30 32.72 1.0908
Pinion . . 6 7.4 7.05 1.23 1.175
Wheel . . 36 38.55 _
Pinion . 12 14.02 I S —
Wheel . . 40 40.7 _ R R
Pinion . . 10 11.52 N _— —_—
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The “‘flank’’ of the tooth is no longer a straight line, but a
kypocycloid described by a point of the same generating circle
rolling on the interior of the primitive circumference of the wheel.

Thus (Fig. 77) ¢ a is the useful epicycloidal arc, while a 4 is
any curve whatever shortening the tooth ; in this manner, the height
of the ogive is not determined ; £ 4 is a hypocycloidal arc gen-
erally approaching, very nearly, a straight line.

..

Fig. 77

To determine the height of the shortened ogive in units of
diametrical pitch, it is necessary to proceed graphically or by simply
estimating it by the eye

Generally, for this gearing, the height of the two ogives placed
opposite to each other can be taken as 2}{ diametrical pitch.

If, then, » and »’ are the numbers of teeth, the crown w&heel

should be fitted to the division
n + 2%

and in the same manner the ratchet to the division
n + 24%.
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293, Being given the primitive radius of a pinion, lo calcu-
late its total radius and, reciprocally, being given the total radius
of a pinion, to find its primitive radius. The same as for the
wheel ; in the first case, one multiplies the primitive radius given
by the factor of the table, and in the second, one divides the total
radius by the factor. One has, therefore,

R’ = #’ X tabulated factor,

R/
~ tabulated factor’

or
v

Just as for the proportional compass the table gives two factors
for each pinion, one suitable for a semi-elliptical excess, the other
for a semi-circular excess.

Let, for example, » = 1.25 and #' = 10, semi-circular form ;
one will have

R’/ = '1.25 X 1.105 = 1.38025,

o= 1.38025
1.105

or

= 1.2§,

If the excess was of semi-elliptical shape, one would have

R/ = 1.25 X 1.15 = 1.4375,

or, for the inverse problem,
g = 1:4375

T = 1.25.

294, Being given the primitive radius of a wheel, one seeks
_for the total radius of the pinion in which it gears (semi-elliptical
form). One has the proportion

AR
7
which gives the value
4
v=r2;
”

and since
R’ = 9’ X tabulated factor

one obtains, on replacing 7 by its value,

/
R =7 % X tabulated factor.
Thus, as example,

. r =538, n =795 n = 10
one will have

R = 538 X —;% X I.I115 = 0.8249.
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295. Being given the primitive radins of a pinion, one desires
the total radins of the wheel. We have

f="’7v

and
R:r)(tab.fac.:f—s-)(tab.fac.
Let 7 — 0.86, n — 80, # =— 10. One will write
R:o.SG)(—f—:—x 1.0423 = 7.17.

296. Being given the total radius of the wheel, lo find the total
radius of the pinion. We have

ry =

R
tab. fac. of the wheel

f’=r"§
»

and

on replacing, it becomes

” = . R
" m tab. fac. of the wheel
Afterward
R’ = 7/ tab. fac. of the pinion ;
consequently,

—rT tab. fac. of the pinion
- n tab. fac. of the wheel
Let, for example,

R = 102, n = 80, 7/ = 10,

Tabulated factors {‘ryh.ed = 1.0423
mnion — I.1§

one will have

R’:IO.:X—;%X

291. Being given the total radius of the pinion, to find the
lotal radius of the wheel. In an analogous manner to the preced-
ing case, one will have '

» = L
1 ~ tab. fac. of the pinion
anc .
y = 9 ”L,r
from whence
o Vid ]

And si tab. fac. of the pinion 7/
ned since
R = r tab. fac. of the wheel,
has at last
one R RE tab. fac. of the wheel
’ n’ tab, fac. of the pinion
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Let R’ = 1.4067, n = 80, n' = 10, one will have
R — 14067 X 8 X 1.0423
10 X I.I5
298. Being given the distance of the centers and the numbers
of leeth in a gearing, to determine the tolal diameters of the wheel
and pinion. We know the formulas (185)

= l0.2.

r=D-—/——- and ¥ = D

/’
and since i + i + ”
R = 7 tab. fac. of the wheel,
R/ =177 tab. fac. of the pinion,
one has
R =D —— + I tab. fac. of the wheel,
; n ..
R =D _——3 T tab. fac. of the pinion.
Let D=s52n=1,% =17,

1.0423 for the wheel
Tabulated factors { 11995 for the pinion
one will have

5-2 X 70 X 1.0423 X 2

2 R = = 9.854,
77 9.854
2 R — 52X 7 ><77I-1995 X2 _ e

299, Being given the total radius of the wheel and the num-
bers of teeth of the gearing, one desives to find the distance between
the centers of the two mobiles. The formula

”
r =D ——
gives nton
/
D—rnt?
. n
and since
- R
one will have tab. fac. wheel
D — R n+n
" tab. fac. wheel ~ n
Suppose R = 4.927, n = 70, #’ =7,
Tabulated factors of the wheel, = 1.0423.
One places D 4921 X711 _
= 22X A I g,
1.0423 X 70

300. Being given the total radius R' of a pinion and the num-
bers n and n' of the teeth of the gearing, to delermine the distance
of the centers D.
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from whence one finds

9 p
120
y =

’l/
—n— + 1+ tab. fac.

Knowing 7, it is easy to determine 7, since

the distance of the centers D will afterward be determined by the
sum of the two primitive radii.

Fig. 81

Knowing r and #, one will calculate the total radii R and R’
by the operation :
R = r tab. fac. of the wheel.
R' = 7' tab. fac. of the pinion.
Suppose, as an example, P = 43 mm. (19 lines), » — 80 and
7' = 10.
Tabulated factor of the wheel

= 1.0423.
Tabulated factor of the pinion, = 1.15.
One will have:

59
120 X 43

r=i+1+ 1.0423
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or also — 59 X 43 _ 59X 43
120 (} + 1 4+ 1.0423) 260.086
and
It follows that 7= 97545
v = %545 == 1.2I93.
Then
D = 9.7545 + 1.2193 = 10.9738,
and finally
R = 9.7545 X 1.0423 = 10.17.
R = 1.2193 X 1.1§ = 1.4.
Since one has
%96 - 43 = 21.1416,

one should have [ikewise, or very nearly,
Y + r + R = 21.1416.
The addition gives

1.2193

9-7545
10.17

21.1438.

With this approximation the result is satisfactory.

302. Being given the total radius R’ of the pinion in whick
the vack of a rcpeater gears, the number n' of leeth according to
whick the pinion is divided* and the total radius R of the rack,
one destres to find the number according to which the sector of this
last wheel must be cut.

Let us admit the ogive of the teeth range of the two mobiles
cqual to twice the diametrical pitch (277). We will have the
primitive radius of the pinion by the formula

o o= R w
nw + 2
and that of the wheel
Rn
ry =
Since one has n+2
v _n: ,
one can also write r "
R
W _ w2  Ra(nda)
» T Rn T Ran(wF2
n -2

*One hnowa that the division of this pinion by the set of teeth is not complete, for the
vearon that thiz mobile only executes a fraction of a turn. The pitch of the gearing left full
Maeilitaten the arreat of the movement.
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The formula which we have determined (301) gives us

59
39 % 50
y = 120
E

% + 1 + 1039
and making the calculation , _ [, 36,

v =17 %’— = 11.36 X = I.42,

k-

and
D = 11.36 + 1.42 = 12.78.
The total radii of the two mobiles were :
R = 11.36 X 1.039 = 11.803,
R = 142 X 1.14 = 1619
For the second watch, the calculations are naturally analogous,
only we have here the case of a gearing whose teeth range is not
found in the table.
One can admit, in this case, by analogy the tabulated factor of
the wheel equal to 1.04 by slightly forcing the figure of the factor
In the preceding gearing, since the height of the ogive should
M crease with a larger pinion (15 leaves instead of 12).
For the pinion, we will concede an excess with semi-circular
sl"\ape perfectly admissible for this number of leaves.
We will thus have

59
== X 50
y = _ T20 "~ »
% + 1 4+ 1.04
Rnd making the calculation y = I1L.17;
and

7 = I11.17 I5 - 1.745.
“Xherefore, %

D = 11.17 4 1.745 == 12.915
one will have the total radii
R = 11.17 X 1.04 = 11.617

and 2w -
Ri=y =r’( ) = 1.8
XS s 1.891

One sees that the diameter of the barrel has diminished and that
of the pinion and the distance between the centers has increased.

307. Let us now seek for the exterior and interior radii of the
barrel drum.

These dimensions ought to be as large as possible. The ex-
terior radius of the drum in the first watch was 11 mm., therefore
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since for the same number of teeth in the barrels the relation of the

leaves and pinions is 12 _ 4
15 5°
In order that this difference between the moments of extreme

force may exist with 5 turns of the stop work, one must have the

proportion 165 _ m’+5
125 = n/
from whence one finds ,
7,/ = 15.625,

and afterwards

7, = 20.625 —:- n.

309. Let us further calculate the thickness of the spring. Let ¢
be this thickness for the spring in the first watch and ¢ that of the
spring in the second.

For the first case we have the moment
_Ehel2mn

F=
12 L
and for the second
4 5 Ehe*2nin
4 F==27 2 )
S 12 L 5

on remarking that the length Z increases in inverse relation to the
diminution of the thickness e.
One could, therefore, place

4 Ehe2mn _ Ehe2win

5 12 L L4
e
from whence, on simplifying, one obtains
S
4 ,._4
5 £
and ¢
temde
therefore,
25 &/t = 16 ¢,
from whence
.
—eal 3 _ 4
25 5

For e = 0.21, one has
¢/ = o0.21 X 0.894427 = 0.10826.
310. Since we have the proportion
L e

V2
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As for the cylindrical gearings, one can prove that the rela-
tion of the angles traversed by the two cones is inversely propor-
tional to that of the diameters C B and 4 C

The diameters can be measured in any manner whatever, pro-
vided that their circumferences be tangent. Thus, in place of C B
and A4 C one can just as well take C’ B’ and 4’ C’, since these
straight lines form the sides of similar triangles.

P T
- 1] \
l" H .\.
ke : N\,
4 . N
A : (34
’ : >
! : \
F N ARt SEEts \

.,_i:r

~ -

il P

Fig. 82

a and @’ being the angles traversed in the same time by the
two cones, one has, therefore, the proportion

AC A c’ o’

CBE T B T e’
and since, 7 and 7’ being the numbers of teeth
v _ 7
3 —u - ﬂ/ !
one will also have
AC _ »
CB ~— o

314. The pitck p of the gearing varies with the distance O C;
for such a point of contact C, it is

powdC _ BC

” n
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in the first case, all the properties already determined are here
reproduced.

Thus, one can determine the curve described by a point of
one of these primitive circumferences by making one of the cones
roll on the other which remains immovable ; the curve thus engen-
dered is the spherical epicycloid B C.

On account of the similarity of the methods employed in this
case with those that we have previously described, we will not enter
into all the details of these constructions.

316. Let us examine, however, the case of flank gearings.
The flank being a diametrical plane of the primitive cone, the driving
tooth will be a conical surface whose form must be determined.

Suppose S O and S O the axes of the two primitive cones
which should turn while touching along an edge S Af (not repre-
sented in the Fig. 845. Suppose M m N and M w' N” the arcum-

ferences of the cirdes proceeding from the inzersection of the two
their respective axes. On the radius 3 O of the aade 7 s
diameter, one describes a drcumference 07 and throogh its comer
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primitive circumferences with radii /’ ¢’ and G’ C’ and determine
the form of the teeth according to the method known.

In order to obtain a horizontal projection of the tooth of the
wheel (winding pinion, for example) whose center we can place at

¢
t" “\
“l

-’

ecase

-......-_.\:-.---.v--- ecewre

ceematoce. on
h

X een

/

4
Fig. 87

¢, let us note that the point €’ is projected at Cand C”, we will
liave, therefore, the circumference of the primitive base of the cone
with radius /2 C:= 0" C"'; let us lay off half the thickness of the
testh ¢ £’ on each side of C” on the primitive circle.
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In order to determine now the total radius 0" 7", correspond-
ing to the point /', let us project this point /7’ on the plane 7 G
at /; draw the radii O 7 prolonged to A/; the point of intersection
A of this radius with the plane B C gives the total radius £
that one can project on O /”; from the center O’ describe after-
wards the total circumference of the wheel.

Fig. 88

One proceeds in an analogous manner to determine the bottom
of the teeth on the plane B C by projecting the point X' on F G,
drawing the radius O X cutting the plane B C at N and projecting
this point at X”; one will have thus the radius O X of the cir-
cumference passing through the base of the teeth.

In order to determine finally any point P’ of the form of the
teeth, project the point P’ to P on F G, draw the radius O P U
and project the points 2 U on O” /”. From the center 0" one
causes to pass through the points obtained arcs of a circle and lays off
the half thickness .S’ P’ on the circle passing through S"; and
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Fig. 93 shows too small a pinion ; the pitch of the gearing of
the wheel is greater than that of the pinion. When the tooth A2
should cease the contact on the generating circle, the tooth A4 is
still found removed from the leaf that it should conduct. The
tooth B will slip along the flank of the leaf and at this instant the
normal to the point of contact will not pass through the point
of contact of the primitive circumferences, but will cross the line of
centers at a point nearer .
the center of the wheel. ! ,0 .
One will, therefore, ' : !
have, in this case, an ’
increase of the force
transmitted. For a
uniform movement of
the pinion, the wheel
will take an accele-
rated movement ; this
is, technically speak-
ing, a ‘‘drop.”’

Fig. 94 represents
too deep a gearing, the
tooth B conducts its
leaf farther than the
generating circumfer-
ence ; there is, there-
fore, produced a slip- 3
ping of the point of
the tooth against the
flank of the leaf, the accelerated movement which the wheel
takes terminates by a drop of the tooth which follows on the
leaf which it will conduct. The direction of the normal at the
point of contact shows that one has, in this case, also an
increase of the force transmitted.

Fig. 95 represents the case of a bad teeth
range of the wheel. The teeth, which are too
long, drive the pinion leaves farther than they
should geometrically ; one can thus recognize
the drop which will be produced.

A gearing presenting the above defects can
Fig. 92 be corrected by diminishing the height of the

!
!

!
!
!
!
i
|
!
!
!

Fig. 91
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gearing fulfilling all the con-
ditions of a uniform trans-
mission of the force, even
when the essential character-
istics of the flank or epicy-
cloidal gearing no longer exist.
In this case, the entire theory
of the determination of the
forms of contact is there in
order to make us understand
that one has luckily been able
to find a combination of forms
fulfilling the condition estab-
lished, that the normal to the
successive points of contact
passes constantly through the
point of tangency of the primi-
tive circumferences. We know
that this condition suffices for
the gearing to be perfect,

227

o¥

Fig. 94

whatever may be the shape of the profiles established.

Passive Resistances in Gearings.

326. General Ideas. We have already indicated that the pas-
sive resistances are forces which naturally present themselves in

. o

~

|

|

!
Fig. 95 +0

all machines in motion(46).

These resistances are of
diverse natures: some pro-
ceed from the bodies them-
selves, from their weight,
their form, their dimen-
sions, and also from the
relativeness of the move-

" ments which animate them.

Such are friction, and its
congenerics, inertia and
shocks. Others arise, more
properly, from the medium
in which these bodies are
moved, such as, especially,
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the work to be expended in arder to produce the movement of the
motive wheel
One thus understands that the work of friction may be generally
expressed as function of the resisting useful work to which it is added.
340, Let us adopt the following notation :
A, the wheel which controls the movement ;
7, its primitive radius ;
n, its number of teeth ;
A’, the wheel controlled ;
7, its primitive radius ;
#’, its number of teeth.
a =t c = t ¢ (Fig. 99) the pitch of the gearing, and Q the resis-
tance opposed to the movement of A acting tangently to the primi-
tive circumference.

Fig. 99

Generally, in gearings, there are several teeth of the wheel
which work at the same time ; but, in order to facilitate the calcu-
lation, we will suppose that there is only one and that it controls
from # to ¢, that is to say, a space equal to the pitch. During this
passage &, the work absorbed by the normal pressure between the
teeth is equal to this pressure multiplied by the length of the curve
traversed by the point of contact ¢ in its passage from £ to ¢', a
length which does not perceptibly differ from a*. But, since the

* Let us note that the normal pressure has not Fenenl]y a constant value; it would have
it only in the case of gearings by involvent of circle, if one neglected the friction. For the
others, it is variable and it is the mean value of this quantity that must be made to enter into.
the expression of the work of the friction.
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If P is the motive force which acts tangently on the driving

* wheel, the motive work for the distance traversed a is P @ and one has

Pa=Qa-+ Qa'[;(%—+ :,).
from whence
Pr=o+ 0L (L +L)

341. Taking up again the formula (1) in which QO a represents
the useful work ‘‘ W,,"’ this can still be put under the form

Wa =W+ W- L2 (L + L) @

Since one has, moreover,
T _r
Y
n and 7’ being the number of teeth, and since

na=2wrand #” a = 2% 7/,

one obtains o

na a
y = ——and v =
2w

2

On replacing these values in the formula (2) and simplifying,
it becomes

W = W + W...fc(—},—+%). (3)

e [14 e (54 5)]

from whence one draws
We =

or

14 /= l(Vl_{__L) (4)
”n n

342, On examining these two last equations, we can see that
one diminishes the friction by increasing the number of teeth.

Thus, for a wheel of 64 teeth gearing in a pinion of 8 leaves,
one would have, on admitting 1#,, = 1 and f = 135,

W = ! = X,
1 1 1.066
1 + o.15. 3.1416 (24— + T) ‘

while for a wheel of 96 teeth gearing in a pinion of 12 leaves, one
would have only
. I . I
Wa = 1 1 T 1.044
1 + o.15. 3.1416 (; + =
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347. Let us examine, for example, the case of a wheel with 60
teeth gearing in a pinion of 6 leaves, since we know that in horology
this gearing is one of those in which the contact of the tooth and

Fig. 100

the leaf should commence the most in advance of the line of centers ;

and let us examine successively the four following cases :
First—The wheel drives the pinion after the line of centers ;
Second—The pinion drives the wheel before the line of centers ;
Third—The wheel drives the pinion before the line of centers ;
Fourth—The pinion drives the wheel after the line of centers,
348. The Wheel Drives the Pinion After the Line of Centers.

Suppose O and O the centers of two mobiles (Fig. 100), 2 the






Gearings. 241

NUMERICAL CALCULATION.—Let Q » = 1, f = 0.15,

/
T2 e=a s e,

one has n
f(x-{-%) = o.I§ (1+—6%-)=o.165

Log: 0.165 = 0.2174839 — 1

Log: tang a = 9.9584454
0.1759293 — 1

Number . . . = 0.14994

We will therefore have the relation
Pr _
Q Pa — & 4994'

On subtracting the friction, and admitting the moment P =
1 gr., we would have, in this case,

from whence Q 6’
0= x.?Go- = o.I gr.
On introducing the force of friction, one will have
P _ 114994 X 60

from whence Q 6

0= = 0.08696 gr.

I
11.4994

349. The Pinion Drives the Wheel Before the Line of Centers.
In this case the moment QO becomes the moving power and the

value Q r will become superior to 2 . The formula (1) then
becomes or :

Pﬂ:x—f(x+n7,tanga.),

(2)

remarking that the sign of the friction is changed.
NuMERICAL CALCULATION.—The same data as in the pre-
ceding case, except that we take here P» = 1. We have

Va (x + %,) tang. & = 0.14994,

then 1—f (1 + ”T,) tang. @ = 0.85006,

Qr _ 1 _
Py 0.85006 = 1.1764.
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On subtracting the friction, one would have, if O = 1 gr.,

Lo _ 6
from whence P 60"
60
= Q "—6— = 1o gT.

On introducing the force of friction, one will have

2 _ 6
from whence y Ay

=1 __8g

= oanjeg — S &

350. The Wheel Drives the Pinion Before the Line of Centers.
We have in this case (Fig. 101), reasoning the same as in the
preceding cases,
P— N O0b= 0.
Q—N.O¥V 4+ fN'. Od= 0.
from whence

P 7. sin B

or, again, s ey L
L 1
or

x—f(x+%)cotangp

But the angle 4 O ¢, complement of B, is equal to
n
a -—

n
since the angles traversed in the same time by the two mobiles of a
gearing are inversely proportional to the numbers of teeth (176).
One will, therefore, have,

Py

_ I
R T - B

NUMERICAL CALCULATION.—Let a = 17° 44’ 13", ® = 60,
n = 6. .

One has )
e = o1 X 17° ¢ 13" = 1° 46 25.3"
F %+ 1) == 015 X 11 = 165
log. 1.05 = 0‘2174839
log. tang. (e «3) 8. 3908948
0.7083787 — 2

Number = 0.031095
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1 —f(r4+3) tang. (& %) = 1 — 0.051095 = 0.948905

and 1 _ _ Pr
;.—'—- Bs — 1-053& —_— F.
If the moment of force P = 1 gr., we have, without the
ict
friction, Q= P—:—/=x.7‘%=o.xgr.

|
i
!
!
!
i
L
iy
[
!
!
I
!
[

Fig. 101

On introducing the friction, one has
0 P ” 1 I

= To538 ~m ~ Tos3®s 10
©Q = 0.09489 gr.

from whence
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W, i 1shus ey o ol Vry the half of their value, one obtains

’ r ” e
J/Iﬂill '(/”r'a ) a--b T-a-rbcos"

/
ll) //~'”/‘/,\///'Q( -e)—zeb—’/—-cosq

Mo thi: lowen plvent, one would obtain in an analogous manner

I v s I -
N ' "o ) - r.
() . uth"’(r d zadr cos a.
WY, Lipon enamining the Fig. 103, one will notice that the
premiie ob the center wheel teeth is greater than the resistance
whirh the lewven of the thind pinion oppose.  Consequently, for

{

A\
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We will have for the top pivot
P _ 7115 r 0.8

S ¥ it S AN B
a+ 6 4.86 15.95 r 5.49 0.16,
and
b* = 4.06" = 16.40. (—';— e) = (0.16 X 2.2)* = o0.1239
zad%-cos¢=2x2.2X4‘06Xo.16><—o.08715=-o.25.
and R = 15.95 V/ 16.48 + 0.1239 + 0.25

R = 15.95 1/ 16.8539 = 65.47.

For the lower pivot, one wiil have successively

R, = 15.95 4/0.8* 4 0.16 X 3.2° — 2 X 0.8 X 0.32 X 0.16 X cos 95°

and R, = 15.95 1 0.64 + 0.26 4 0.07
R, = 15.95 1 097 = 15.71.

365. Let us now determine the value of the work of friction of
the third wheel’s pivots during one oscillation of the balance. We
have the formula (356).

W. F=fPr B
in which P represents the pressure, », the pivot's radius, g the
angle traversed during one oscillation. .

Let us first seek this latter angle. The fourth wheel makes
one rotation in 60 seconds or in 300 oscillations. If the third
wheel has 75 teeth and the fourth pinion 10 leaves, this pinion
turns 7.5 times faster than the third wheel; the third wheel,

therefore, makes one turn in 300 X 7.5 oscillations = 2250
oscillations.
During one oscillation it will traverse, therefore, an angle g:
= 369° oo a6
=250 9 375

this angle expressed in length of arc with radius equal to unity is

or 0° ¢’ 36’/ = 0.00279

0.0028 in round numbers.
The diameter of the pivots being 0.26, we will have for the
top pivot '
W. F = o.15 X 65.47 X 0.13 X 0.0028 = 0.0035 gr. mm..
and for the lower pivot

W. F = o.15 X 15.71 X 0.13 X 0.0028 = 0.00085 gr. mm.,
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the heart executes a demi-turn, therefore, an angle equal to « ; one
will, therefore, have

L .
0. T v —0
from whence =% v—=
_®(0—0,)
Y="v—,
Consequently, one can write
0 —o
and G=‘l’°/_;;¢i(.—oo)
0 0,
e=wo—9 — To_e TIOE10
and also ° °

from whence

3 .
n—*—‘l’o,_ooo :Fi°°=<°-,——'_'°::l:})o.
One will thus have

o + L 3 6,—f:o~°°— =+ ‘} oo a
0 = '—_ =‘l’ii—(o’—°°)+°°.
v—o, * ! v —e,

The equation of the two branches of the curve of the heart
expressed in polar co-ordinates will, therefore, be

r =2 R.sin } —'———-“ + 0,
v—e =}

372. NUMERICAL CALCULATION.—Let us admit

Yo = 2 R.sin } 0, = 4. 7,= 2 R.sin § ¢ = 24.

R = 140.
We will have s,

4 . 24
X ni0 = andsin } ¢/ = -1,
which gives ° 2% 280

0, =1° 38 13.6”

/ — a° /.

consequently, ¥ =9° 57 37

0/ — 0, = 8° 11/ 49.4”.
Expressed in seconds of the arc, the angles 0, 0/ — @, and « give

0, = 5893.6 seconds
¢ — 0, = 29509.4... *
® = 684000 ... ‘

Let us first calculate this equation under the form

r =2 R sin } <;ﬁﬁ3 + 0°>
and suppose a = 30°. V=%,
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If one would like to know, also, the value of the angle B, cor-

responding to the above data, one would have
B=1 (¥ —0,)=2T0004" _ o ggppm

373. In order to obtain a greater stability for
the chronograph hand, one prefers, sometimes, to
make the heart like the adjoining form (Fig. 107);
one suppresses, in doing this, a part of its curve,
but, by way of compensation, the part B 4 B’ of
the arm is terminated by curves fulfilling the
conditions desired.

NorE.—In the original French, paragraphs 374 to 877, inclue
sive, appeared at the end of Vol. I as an appendix, but in trans-
lating were moved to their proper places in the text and the
paragraph numbers, together with the figure numbers under
cuts, were accordingly changed as follows :

Paragraph No. 374 now appears as No. 169 a on page 114
Paragraph No. 375 now appears as No. 169 b on page 115
Paragraph No. 376 now appears as No. 169 on page 115
Paragraph No. 377 now appears as No. 226 on page 154
Paragraph No. 378 now appears as No. 2265 on page 165
Figure No. 108 now appears as No. 37a on page 114
Figure No. 109 now appears as No. 61a on page 166

Fig. 107

















































OptoMETRIC RECORD BoOk

A record book, wherein to record optometric examinations,
is an indispensable adjunct of an optician’s outfit.

The Keystone Optometric Record Book was specially pre-
pared for this purpose. It excels all others in being not only a
record book, but an invaluable guide in examination.

The book contains two hundred record forms with printed
headings, suggesting, in the proper order, the course of examina-
tion that should be pursued to obtain most accurate results.

Each book has an index, which enables the optician to refer
instantly to the case of any particular patient.

The Keystone Record Book diminishes the time and labor
required for examinations, obviates possible oversights from
carelessness and assures a systematic and thorough examination
of the eye, as well as furnishes a permanent record of all exam-

inations.

Sent postpaid on receipt of 81.00 (4s. 2d.)

vubtisheaby 1 HE KEYSTONE,
THE ORGAN OF THE JEWELRY AND OPTICAL TRADES,
19TH & BROWN Sts., PHILADELPHIA, U.S.A.
























